Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
g2(f1(x), y) -> f1(h2(x, y))
h2(x, y) -> g2(x, f1(y))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
g2(f1(x), y) -> f1(h2(x, y))
h2(x, y) -> g2(x, f1(y))
Q is empty.
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
H2(x, y) -> G2(x, f1(y))
G2(f1(x), y) -> H2(x, y)
The TRS R consists of the following rules:
g2(f1(x), y) -> f1(h2(x, y))
h2(x, y) -> g2(x, f1(y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
Q DP problem:
The TRS P consists of the following rules:
H2(x, y) -> G2(x, f1(y))
G2(f1(x), y) -> H2(x, y)
The TRS R consists of the following rules:
g2(f1(x), y) -> f1(h2(x, y))
h2(x, y) -> g2(x, f1(y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].
The following pairs can be oriented strictly and are deleted.
H2(x, y) -> G2(x, f1(y))
G2(f1(x), y) -> H2(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:
POL(G2(x1, x2)) = 1 + 2·x1
POL(H2(x1, x2)) = 2 + 2·x1
POL(f1(x1)) = 2 + 2·x1
The following usable rules [14] were oriented:
none
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
Q DP problem:
P is empty.
The TRS R consists of the following rules:
g2(f1(x), y) -> f1(h2(x, y))
h2(x, y) -> g2(x, f1(y))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.